Perbandingan Laravel Seeder dan Faker Untuk Otomatisasi Data Uji Pada Aplikasi Perpustakaan

Penulis

  • Sang Ayu Primayani SMK Bali Dewata
  • I Gede Wahyu Sanjaya UHN I Gusti Bagus Sugriwa Denpasar

DOI:

https://doi.org/10.25078/nivedita.v2i1.5615

Kata Kunci:

Laravel, Seeder, Faker, Otomatisasi Data, Pengujian Perangkat Lunak, Sistem Informasi

Abstrak

Software testing processes often encounter challenges in preparing realistic, consistent, and efficient test data. This study aims to analyze the implementation of Laravel Seeder and Faker as automated mechanisms for generating test data during the testing phase of Laravel-based web applications, specifically using a simple library system as a case study. The main objective is to evaluate the effectiveness of these two methods in supporting application testing, focusing on time efficiency and the representativeness of generated data under real-world conditions. Experiments were conducted on three main entities—User, Category, and Books—across three dataset scales: small (10 records), medium (100 records), and large (1000 records). The results show that the manual seeder achieved faster execution times (2.17s to 222.58s for 10–1000 records), while the Faker seeder required slightly longer times (2.03s to 253.43s) due to randomized data generation. However, Faker produced more diverse and realistic datasets, making it better suited for stress testing and performance evaluation scenarios. This study concludes that the manual seeder is more appropriate for application logic validation and integration testing, whereas the Faker seeder is more effective for user behavior simulation and large-scale load testing. A hybrid approach combining both methods is recommended to balance efficiency and realism in the test data generation process for Laravel-based software testing.

Unduhan

Data unduhan belum tersedia.

Referensi

IG Wahyu Sanjaya, “Electronic Procurement Website Service Quality and Customer Loyalty Using The Pieces Method, A Case Study of The Denpasar City Government,” Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), vol. 12, no. 2, pp. 294–303, Jul. 2023, doi: 10.23887/janapati.v12i2.61325.

A. Jaffari, C.-J. Yoo, and J. Lee, “Automatic Test Data Generation Using the Activity Diagram and Search-Based Technique,” Applied Sciences, vol. 10, no. 10, p. 3397, May 2020, doi: 10.3390/app10103397.

S. J. Nawale, A. A. Kadam, J. C. Musale, and A. T. Lohar, “A Review on Automated Test Data Generation (ATDG),” Mathematical Statisticianand Engineering Applications, vol. 70, no. 1, pp. 780–787, 2021, [Online]. Available: http://philstat.org.ph

I. G. W. Sanjaya, L. G. S. Kartika, and P. Kussa Laksmana Utama, “PERANCANGAN E-SUKERTI (SURAT KETERANGAN ELEKTRONIK) DESA BATURITI BERBASIS WEB BERBASIS BLACK BOX TESTING,” METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi, vol. 9, no. 2, pp. 264–274, 2025, doi: 10.46880/jmika.Vol9No2.pp264-274.

W. Sanjaya, “SISTEM INFORMASI SURAT TUGAS BERBASIS AJAX PADA BAGIAN PENGADAAN BARANG/JASA KOTA DENPASAR.”

W. Sanjaya and D. Hermawan, “DIGITALISASI BUKU TAMU PEMERINTAHAN DESA BENGKALA DENGAN REAL-TIME DATA VIEW BERBASIS AJAX,” JSI : Jurnal Sistem Informasi (E-Journal), vol. 14, no. 2, 2022, [Online]. Available: http://ejournal.unsri.ac.id/index.php/jsi/index

T. Avdeenko and K. Serdyukov, “Automated Test Data Generation Based on a Genetic Algorithm with Maximum Code Coverage and Population Diversity,” Applied Sciences, vol. 11, no. 10, p. 4673, May 2021, doi: 10.3390/app11104673.

T. Avdeenko and K. Serdyukov, “Automated Test Data Generation Based on a Genetic Algorithm with Maximum Code Coverage and Population Diversity,” Applied Sciences, vol. 11, no. 10, p. 4673, May 2021, doi: 10.3390/app11104673.

M. Brunetto, G. Denaro, L. Mariani, and M. Pezzè, “On introducing automatic test case generation in practice: A success story and lessons learned,” Journal of Systems and Software, vol. 176, p. 110933, Jun. 2021, doi: 10.1016/j.jss.2021.110933.

M. Goyal and Q. H. Mahmoud, “A Systematic Review of Synthetic Data Generation Techniques Using Generative AI,” Electronics (Basel), vol. 13, no. 17, p. 3509, Sep. 2024, doi: 10.3390/electronics13173509.

M. Brunetto, G. Denaro, L. Mariani, and M. Pezzè, “On introducing automatic test case generation in practice: A success story and lessons learned,” Journal of Systems and Software, vol. 176, p. 110933, Jun. 2021, doi: 10.1016/j.jss.2021.110933.

M. Goyal and Q. H. Mahmoud, “A Systematic Review of Synthetic Data Generation Techniques Using Generative AI,” Electronics (Basel), vol. 13, no. 17, p. 3509, Sep. 2024, doi: 10.3390/electronics13173509.

A. Jaffari, C.-J. Yoo, and J. Lee, “Automatic Test Data Generation Using the Activity Diagram and Search-Based Technique,” Applied Sciences, vol. 10, no. 10, p. 3397, May 2020, doi: 10.3390/app10103397.

N. S. Arida, I. A. Suryasih, and I. G. N. Parthama, “Model of Community Empowerment in Tourism Village Development Planning in Bali,” IOP Conf Ser Earth Environ Sci, vol. 313, no. 1, p. 012024, Aug. 2019, doi: 10.1088/1755-1315/313/1/012024.

Unduhan

Diterbitkan

06-12-2025

Cara Mengutip

[1]
S. A. Primayani dan I. G. W. Sanjaya, “Perbandingan Laravel Seeder dan Faker Untuk Otomatisasi Data Uji Pada Aplikasi Perpustakaan ”, Journal Informatics Nivedita, vol. 2, no. 1, hlm. 30–39, Des 2025.
Abstrak viewed = 18 times